Structure of 5,5-Dimethyl-3-[β-($\mathbf{2}^{\prime}$-hydroxystyry)]-2-cyclohexenone: a Condensation Product of Isophorone Dienamine and Salicylaldehyde

By V. M. Lynch, S. N. Thomas and S. H. Simonsen
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
T. Vedagirishwara Rao and G. K. Trivedi
Indian Institute of Technology, Bombay, India 400076
and S. K. Arora
College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, USA

(Received 3 June 1988; accepted 18 August 1988)

Abstract

C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}, M_{r}=242 \cdot 32\), monoclinic, $P 2_{1} / n$, $a=13.552$ (4), $b=5.852$ (2), $c=17.221$ (2) $\AA, \beta=$ $104.55(1)^{\circ}, \quad V=1321.9(6) \AA^{3}, \quad Z=4, \quad D_{m}=1 \cdot 20$, $D_{x}=1.22 \mathrm{~g} \mathrm{~cm}^{-3} \quad(163 \mathrm{~K}), \quad \lambda($ Мо $K \alpha)=0.71069 \AA$, $\mu=0.735 \mathrm{~cm}^{-1}, \quad F(000)=520, \quad T=163 \mathrm{~K}, \quad R=$ 0.0514 for 1685 reflections. The molecules are observed as hydrogen-bonded dimers with $\mathrm{O}(5) \cdots \mathrm{O}(15)$ (related by $-x, 1-y, 1-z$) and $\mathrm{H}(5) \cdots \mathrm{O}(15)$ at distances of $2.686(2)$ and $1.72(4) \AA$, respectively, while the $\mathrm{O}(5)-\mathrm{H}(5) \cdots \mathrm{O}(15)$ angle is $170(3)^{\circ}$. The phenyl and the cyclohexenone moieties are nearly coplanar which is indicative of a delocalized π-electron system. The near planarity of the molecule results in a close, intramolecular contact between $\mathrm{O}(5)$ and $\mathrm{H}(8)$ [2.18(2) \AA] which is partially compensated for by a rather large angle at $\mathrm{C}(6) \quad[\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ $\left.125.0(2)^{\circ}\right]$.

Experimental. The title compound (I) was prepared by addition of salicylaldehyde ($2.44 \mathrm{~g}, 0.02 \mathrm{~mol}$) in 5 ml of hexane to freshly distilled isophorone dienamine $(4.14 \mathrm{~g}, 0.02 \mathrm{~mol})$ in 5 ml of anhydrous hexane. Mildly exothermic reaction resulted in a dark-green solution, which formed a sticky solid after one week in deep freeze. Separation over silica gel (150 g), eluting with a 3:17 ethyl acetate : hexane solution afforded the title

0108-2701/89/010169-03\$03.00
compound (m.p. $437-438 \mathrm{~K}$) in 37% yield $(1.8 \mathrm{~g}$, $0.0074 \mathrm{~mol})$. Yellow plate, $0.07 \times 0.26 \times 0.60 \mathrm{~mm}$ from CHCl_{3}. Crystal density by flotation in ZnCl_{2} solution. Syntex $P 2_{1}$ diffractometer, graphite monochromator, Syntex LT-1 low-temperature delivery system (163 K). Lattice parameters from least-squares refinement of 45 reflections with $18.8<2 \theta<28.4^{\circ}$. ω-scan technique (2676 reflections, no redundant data), 2θ range $4.0-52.5^{\circ}, 1^{\circ} \omega$ scan at $2-5^{\circ} \mathrm{min}^{-1}$ ($h=0 \rightarrow 16, k=0 \rightarrow 7, l=-21 \rightarrow 20$). Space group determined from systematic absences. Four reflections ($\overline{4} 00$, $301,002,211$) were remeasured every 96 reflections to monitor instrument and crystal stability. Maximum decay correction < 1% (Henslee \& Davis, 1975). Data corrected for Lp effects but not for absorption. Data reduction described in Riley \& Davis (1976). Sixteen reflections ($25 \overline{8}, 33 \overline{6}, 35 \overline{1}, 54 \overline{1}, 61 \overline{7}, 6,2, \overline{18}, 7,3, \overline{16}$, $7,5, \overline{10}, \quad 81 \overline{3}, \quad 8,4, \overline{16}, \quad 9,2, \overline{12}, \quad 93 \overline{9}, \quad 95 \overline{1}, \quad 10,5, \overline{4}$, $11,5, \overline{2}, 14,3, \overline{2}$) were deleted because of a counter malfunction that went undetected during data collection. Reflections having $F_{o}<4 \sigma\left(F_{o}\right)$ considered unobserved (975 reflections omitted). Structure solved by MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978) and refined by full-matrix least-squares procedures (Sheldrick, 1976) with anisotropic thermal parameters for the non- H atoms. H atoms from a ΔF map and refined with isotropic thermal parameters. 235 parameters refined. $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ minimized, where $w=1 /\left[\sigma\left(F_{o}\right)\right]^{2}$ and $\sigma\left(F_{o}\right)=\left(0.5 k I^{-1 / 2}\right)\left\{[\sigma(I)]^{2}+(0.04 I)^{2}\right\}^{1 / 2}$. Intensity (I) given by ($I_{\text {peak }}-I_{\text {background }}$) \times (scan rate), 0.04 is a factor to downweight intense reflections and to account for instrument instability, and k is the correction due to Lp effects and decay. $\sigma(I)$ estimated from counting statistics; $\sigma(I)=\left[\left(I_{\text {peak }}+I_{\text {background }}\right)^{1 / 2} \times(\right.$ scan rate $\left.)\right]$. Final $R=0.0514$ for 1685 reflections, $w R=0.0518$ ($R_{\text {all }}=0.0920, w R_{\text {all }}=0.0578$) and goodness of fit $=1.341$. Maximum $|\Delta / \sigma|<0.1$ in the final refine-

Table 1. Fractional coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for non -H atoms of 5,5-dimethyl-3-[β-(2^{\prime}-hydroxystyryl)]-2-cyclohexenone

For anisotropic atoms, the U value is $U_{\text {eq }}$, calculated as $U_{\text {eq }}$ $=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i j}^{*} a_{j}^{*} \mathbf{A}_{i j}$ where $\mathbf{A}_{i j}$ is the dot product of the i th and j th direct-space unit-cell vectors.

	x	y	z	U
O5	0.01621 (15)	0.3244 (3)	0.66266 (11)	0.0384 (7)
015	0.11455 (13)	0.3801 (3)	0.29748 (10)	0.0354 (7)
C1	0.1505 (2)	-0.1838 (5)	0.7559 (2)	0.0351 (10)
C2	0.1329 (2)	-0.1727 (6)	0.8316 (2)	0.0402 (11)
C3	0.0773 (2)	0.0068 (6)	0.8505 (2)	0.0394 (10)
C4	0.0397 (2)	0.1730 (5)	0.7947 (2)	0.0329 (10)
C5	0.0558 (2)	$0.1617(5)$	0.71796 (14)	0.0276 (9)
C6	0.1130 (2)	-0.0183 (4)	0.69736 (14)	0.0262 (8)
C7	0.1403 (2)	-0.0405 (5)	0.62005 (14)	0.0273 (8)
C8	0.1140 (2)	0.0971 (5)	0.55606 (14)	0.0283 (9)
C9	0.1489 (2)	0.0763 (4)	0.48296 (14)	0.0269 (8)
C10	0.2212 (2)	-0.1101 (5)	0.4721 (2)	0.0281 (9)
C11	0.2871 (2)	-0.0431 (4)	0.41511 (14)	0.0262 (8)
C12	0.3446 (2)	-0.2511 (5)	$0 \cdot 3959$ (2)	0.0356 (10)
C13	0.3637 (2)	0.1401 (5)	0.4541 (2)	0.0325 (10)
C14	0.2165 (2)	0.0460 (5)	0.33654 (15)	0.0299 (9)
C15	0.1452 (2)	0.2321 (5)	0.34923 (14)	0.0275 (9)
C16	0.1144 (2)	0.2299 (5)	0.42375 (14)	0.0279 (9)

Mann (1968), with anomalous-dispersion corrections from Cromer \& Liberman (1970), while scattering factors for the H atoms were from Stewart, Davidson \& Simpson (1965); linear absorption coefficient from International Tables for X-ray Crystallography (1974). The least-squares-planes program was supplied by Cordes (1983); other computer programs from reference 11 of Gadol \& Davis (1982).*

Related literature. The synthesis of the title compound is an extension to dienamines of a method (Paquette, 1965) for the synthesis of xanthones by the selftrapping of an enamine-O-hydroxyaldehyde condensation product.

[^0]

Fig. 1. View of molecule showing the atom-labelling scheme. Thermal ellipsoids are scaled to the 50% probability level.

Fig. 2. View of the molecular packing down the b axis illustrating the hydrogen bonding between molecules.

The authors (VML, SNT and SHS) gratefully acknowledge the Robert A. Welch Foundation for - support of this work through grant F-017.

References

Cordes, A. W. (1983). Personal communication.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Gadol, S. M. \& Davis, R. E. (1982). Organometallics, 1, 1607-1613.
Henslee, W. H. \& Davis, R. E. (1975). Acta Cryst. B31, 1511-1519.

International Tables for X-ray Crystallography (1974). Vol. IV, p. 55. Birmingham; Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Paquette, L. A. (1965). Tetrahedron Lett. pp. 1291-1294.
Riley, P. E. \& Davis, R. E. (1976). Acta Cryst. B32, 381-386.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1989). C45, 171-173

Structure of ($4^{\prime} R$)-4'-Methoxycarbonyl-17 β-methoxymethyl-2,5 5 -ethanoestr-3-one, a Bridged Steroid Derivative

By Hans Preut, Simone Bathe-Burmeister and Wolfgang Kreiser
Fachbereich Chemie, Universität Dortmund, Postfach 500500, D-4600 Dortmund 50, Federal Republic of Germany

(Received 8 July 1988; accepted 23 August 1988)

Abstract

C}_{24} \mathrm{H}_{36} \mathrm{O}_{5}, M_{r}=404.55\), monoclinic, $C 2$, $a=12.978$ (7), $b=7.076$ (5), $c=24.598$ (9) $\AA, \beta=$ $97.20(5)^{\circ}, \quad V=2241(2) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1 \cdot 199 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=880, \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71073^{x} \AA$, $\mu=0.08 \mathrm{~mm}^{-1}, T=291(1) \mathrm{K}$, final $R=0.048$ for 2915 unique observed [$F \geq 3.0 \sigma(F)$] diffractometer data. The reaction product of 17β-methoxymethyl-estr-4-en-3-one with methyl acrylate leads to a novel [2.2.2]bicyclooctane framework. The constitution and configuration of this product has been clarified by X-ray analysis. Surprisingly, the newly introduced methoxycarbonylethano bridge was located on the β-face [syn to the angular methyl $\mathrm{C}(18)$]. The chiral center at $\mathrm{C}\left(4^{\prime}\right)$ displays R configuration.

Experimental. Following the conditions of Weber, Spitzner \& Kraus (1981) an excess of methyl acrylate at 205 K was added to a THF solution of 17β -

Fig. 1. General view (SHELXTL PLUS graphic) of the molecule, showing the atom-numbering scheme.

0108-2701/89/010171-03\$03.00
methoxymethylestra-4-en-3-one in the presence of LDA. The product can either be interpreted as the result of a tandem Michael addition or a Diels-Alder reaction. The oily product was purified by using preparative TLC and then crystallized from methanol at 273 K , m.p. $357-$ 358 K . Crystal size $\sim 0.45 \times 0.13 \times 0.22 \mathrm{~mm}, \omega / 2 \theta$ scan, scan speed $1.7-5.0^{\circ} \mathrm{min}^{-1}$ in θ, Nonius CAD-4 diffractometer, graphite-monochromated Mo Ka ; lattice parameters from least-squares fit with 25 reflections up to $2 \theta=24.4^{\circ}$; six standard reflections recorded every 2.5 h , only random deviations; 8124 reflections measured, $1.5^{\circ} \leq \theta \leq 25.0^{\circ},-15 \leq h \leq 15$, $-8 \leq k \leq 8,-29 \leq l \leq 29$; after averaging ($R_{\text {int }}=$ 0.026): 3950 unique reflections, 2915 with $F \geq$

Fig. 2. Stereoscopic view (SHELXTL PLUS graphic) of the unit cell (a horizontal, c vertical).
© 1989 International Union of Crystallography

[^0]: * Lists of anisotropic thermal parameters, bond distances and angles involving H atoms, torsion angles, least-squares planes, H -atom parameters, and structure-factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51339 (24 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

